domingo, 9 de diciembre de 2012

Datos curiosos


DATOS CURIOSOS
La brújula: es un instrumento con una aguja magnetizada con libertad de girar alrededor de un eje. La aguja de este instrumento se orienta indicando la dirección y el sentido Norte-Sur magnéticos, de la componente en el plano de rotación, del campo magnético local en el cual esté inmersa. Por un lado, la Tierra se comporta como si tuviese un imán enorme en su interior, con los polos aproximadamente a lo largo del eje de rotación terrestre, con el polo S magnético cerca del polo Norte geográfico.
Campo magnético variable: El campo magnético de la Tierra también está sufriendo otro tipo de cambios: las agujas de las brújulas en África, por ejemplo, oscilan casi un grado por década. Y globalmente el campo magnético se ha debilitado un 10% desde el siglo XIX. Cuando los científicos mencionaron esto en una reciente convención de la Unión Geofísica Americana, muchos periódicos lo anunciaron en sus columnas. Un titular típico: "¿Está muriendo el campo magnético terrestre?"
Probablemente no. Por muy extraños que nos parezcan estos cambios, "son moderados si los comparamos con los acaecidos durante el pasado en el campo magnético terrestre

Descripción: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgHq-OaLlgB5M6pGu6tUNpVfaDvwkuwAO82gC19Ts3SMdpr_2MpHuY90fxSO732u86E_HJw2Lb12ZxuF68UCUNE3WiD-KWLdIcosMsG92xA73tN_L_AzIL0Ov_1f6YPJYWZxNviJIDFPRQ/s320/comparison1_strip.gif

Algunas veces el campo se invierte por completo. El polo norte y el sur intercambian sus puestos.


¿Qué es un imán?
Un imán es un material capaz de producir un campo magnético exterior y atraer el hierro. Los imanes que manifiestan sus propiedades de forma permanente pueden ser naturales, como la magnetita  o artificiales, obtenidos a partir de aleaciones de diferentes metales.
En un imán la capacidad de atracción es mayor en sus extremos o polos. Estos polos se denominan norte y sur, debido a que tienden a orientarse según los polos geográficos de la Tierra, que es un gigantesco imán natural.
¿De dónde procede el magnetismo?
Desde hace tiempo es conocido que una corriente eléctrica genera un campo magnético a su alrededor. En el interior de la materia existen pequeñas corrientes cerradas debidas al movimiento de los electrones que contienen los átomos, cada una de ellas origina un microscópico imán o dipolo. Cuando estos pequeños imanes están orientados en todas direcciones sus efectos se anulan mutuamente y el material no presenta propiedades magnéticas; en cambio si todos los imanes se alinean actúan como un único imán y en ese caso decimos que la sustancia se ha magnetizado.
¿Puede un imán perder su potencia?
Para que un imán pierda sus propiedades debe llegar a la llamada "temperatura de Curie" que es diferente para cada composición. Por ejemplo para un imán cerámico es de 450 ºC, para uno de cobalto 800 ºC, etc.
También se produce la desimanación por contacto, cada vez que pegamos algo a un imán perdemos parte de sus propiedades. Los golpes fuertes pueden descolocar las partículas haciendo que el imán pierda su potencia.
¿Cuántos tipos de imanes permanentes hay?
Además de la magnetita o imán natural existen diferentes tipos de imanes fabricados con diferentes aleaciones:
·         Imanes cerámicos o ferritas.
·         Imanes de alnico.
·         Imanes de tierras raras.
·         Imanes flexibles.
Otros imanes
Los imanes de platino/cobalto son muy buenos y se utilizan en relojería, en dispositivos aeroespaciales y en odontología para mejorar la retención de prótesis completas. Son muy caros.
Otras aleaciones utilizadas son cobre/níquel/cobalto y hierro/cobalto/vanadio


Polos magnetiscos (tambien en la tierra)


El magnetismo es uno de los aspectos del 
electromagnetismoademás es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que aúna ambas fuerzas se denomina teoría electromagnética. La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más sutiles del magnetismo. Recientemente, estos efectos han proporcionado clav
es importantes para comprender la estructura atómica de la materia. 

 El campo magnético de la Tierra (también conocido como el campo geomagnético) es el campo magnético que se extiende desde el núcleo interno de la Tierra hasta su confluencia con el viento solar, una corriente de partículas de alta energía que emana del Sol. Es aproximadamente el campo de un dipolo magnético inclinado en un ángulo de 11 grados con respecto a la rotación del eje, como si hubiera un imán colocado en ese ángulo en el centro de la Tierra. Sin embargo, a diferencia del campo de un imán de barra, el campo de la Tierra cambia con el tiempo porque en realidad es generado por el movimiento de las aleaciones de hierro fundido en el núcleo externo de la Tierra (lageodinámica). El Polo Norte magnético se «pasea», por fortuna lo suficientemente lento como para que la brújula sea útil para la navegación. A intervalos aleatorios (un promedio de varios cientos de miles de años) el campo magnético terrestre se invierte (los polos geomagnéticos norte y sur cambian lugares con el otro) Estas inversiones dejan un registro en las rocas que permiten a los paleomagnetistas calcular los movimientos pasados de loscontinentes y los fondos oceánicos como consecuencia de la tectónica de placas. La región por encima de la ionosfera, y la ampliación de varias decenas de miles de kilómetros en el espacio, es llamada la magnetosfera. Esta región protege la Tierra de la dañina radiación ultravioleta y los rayos cósmicos.
La orientación de las rocas en las dorsales oceánicas, la magnetorrecepción de algunos animales y la orientación de las personas mediante brújulas son posibles gracias a la existencia del campo magnético terrestre.
El Polo Norte Magnético se encuentra a 1800 kilómetros del Polo Norte Geográfico. En consecuencia, una brújula no apunta exactamente hacia el Norte geográfico; la diferencia, medida en grados, se denomina declinación magnética. La declinación magnética depende del lugar de observación, por ejemplo actualmente (2006) en Madrid (España) es aproximadamente 3º oeste[cita requerida]. El polo Norte magnético está desplazándose desde la zona norte de Alaska en dirección hacia Siberia a unos 40 Km por año.

Sabias que...


Radiación electromagnética:

La radiación electromagnética resulta de la oscilación de campos eléctricos y magnéticos. La onda de energía generada por estas vibraciones se desplaza por el espacio a la velocidad de la luz. Y no es de extrañar... ya que la luz visible es una forma de radiación electromagnética (EM) .
Rayos X , ondas de radio , rayos gamma , y "luz" infrarroja y ultravioleta, son los tipos más importantes de radiación electromagnética. Todas son vibraciones de ondas electromagnéticas que viajan, cada una con su propia longitud de onda caraterística. Organizadas por longitud de onda, conforman el espectro electromagnético .
Algunas veces es útil pensar sobre la radiación electromagnética como si viniera en paquetes. A cada uno de estos paquetes de radiación electromagnética (EM) se le conoce como "fotones".
Hay un segundo tipo importante de radiación , que resulta de partículas subatómicas que se mueven a grandes velocidades. A este tipo de radiación se le conoce como "radiación de partículas"

Todo sobre magnetismo


1. Introducción
El magnetismo es uno  los aspectos del electromagnetismo, que es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre laelectricidad y el magnetismo. El marco que enlaza ambas fuerzas, es el tema de este curso, se denomina teoría electromagnétic. La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materialesmagnéticos como el hierro. Sin embargo,  toda la materia se pueden observar efectos más sutiles del magnetismo. Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia.
2. Teoría Electromagnética
 del siglo XVIII y principios del XIX se investigaron simultáneamente las teorías de la  y el magnetismo.. En 1831, despúes de que Hans Oersted comenzará a describir una relación entre la electricidad y el magnetismo, y el francés André Marie Ampére seguido por el físico francés Dominique François profundizarán en dicho campo, el científico británico Michael Faraday descubrió que el  de un imán en las proximidades de un cable induce en éste una corriente eléctrica; este efecto era inverso al hallado por Oersted. La unificación plena de las teorías de la electricidad y el magnetismo se debió al físico británico James Clerk Maxwell, que predijo la existencia de ondas electromagnéticas e identificó la luzcomo un fenómeno electromagnético.
Después de que el físico francés Pierre Ernst Weiss postulará la existencia de un campo magnético interno, molecular, en los  como el , las propiedades magnéticas se estudiaron de forma cada vez más detallada, lo que permitió que más tarde otros científicos predijeran muchasestructuras atómicas del momento magnético más complejas, con diferentes propiedades magnéticas
3. El campo magnético
Una  imantada o un cable que transporta corriente pueden influir en otros materiales magnéticos sin tocarlos físicamente porque los objetos magnéticos producen un ‘campo magnético’. Los campos magnéticos suelen representarse mediante ‘líneas de campo magnético’ o ‘líneas de fuerza’. En cualquier punto, la dirección del campo magnético es igual a la dirección de las líneas de , y la intensidad del campo es inversamente proporcional al espacio entre las líneas.
En el caso de una barra imantada, las líneas de fuerza salen de un extremo y se curvan para llegar al otro extremo; estas líneas pueden considerarse como bucles cerrados, con una parte del bucle dentro del imán y otra fuera. En los extremos del imán, donde las líneas de fuerza están más próximas, el campo magnético es más intenso; en los lados del imán, donde las líneas de fuerza están más separadas, el campo magnético es más débil. Según su forma y su fuerza magnética, los distintos tipos de imán producen diferentes esquemas de líneas de fuerza.
La estructura de las líneas de fuerza creadas por un imán o por cualquier objeto que genere un campo magnético puede visualizarse utilizando unabrújula o limaduras de hierro. Los imanes tienden a orientarse siguiendo las líneas de campo magnético. Por tanto, una brújula, que es un pequeño imán que puede rotar libremente, se orientará en la dirección de las líneas. Marcando la dirección que señala la brújula al colocarla en diferentes alrededor de la fuente del campo magnético, puede deducirse el esquema de líneas de fuerza.
Igualmente, si se agitan limaduras de hierro sobre una  de papel o un plástico por encima de un objeto que crea un campo magnético, las limaduras se orientan siguiendo las líneas de fuerza y permiten así visualizar su estructura.
Los campos magnéticos influyen sobre los materiales magnéticos y sobre las partículas cargadas en movimiento. En términos generales, cuando una partícula cargada se desplaza a través de un campo magnético, experimenta una fuerza que forma  rectos con la velocidad de la partícula y con la dirección del campo. Como la fuerza siempre es perpendicular a la velocidad, las partículas se mueven en trayectorias curvas. Los campos magnéticos se emplean para controlar las trayectorias de partículas cargadas en dispositivos como los aceleradores de partículas o los espectrógrafosde masas.
4. Fuerzas Magnéticas entre distribuciones de corriente
La expresión básica para el calculo de fuerzas magneticas es la fuerza de Lorentz:
Que como :
En el caso de las dos distribuciones de la figura, la fuerza que ejerce la distribución 1 sobre la 2 es:
Si el volumen encierra a la distribución, no puede haber corriente a través de la superficie que la limita.
Intercambiando los subindices se observa que las fuerzas magneticas cumplen el principio de acción y reacción.
Si se aplica la expresión al cálculo de la fuerza que ejerce una distribución sobre sí misma se obtiene un valor nulo. Esto no quiere decir que una distribución no ejerza fuerza sobre sus elementos de corriente, sino que la fuerza total sobre el conjunto de sus elementos de corriente es nula.
La fuerza total sobre un elemento de corriente debe ser ortogonal al mismo
La fuerza entre dos elementos de corriente, en principio, no es necesariamente radial, pero como las distribuciones tienen divergencia nula, sólo contribuye la componente radial. Así que la suma de las fuerzas que dos elementos de corriente ejercen el uno sobre el otro es nula. Dos elementos de corriente paralelos se atraen sis sus corrientes llevan el mismo sentido y se repelen si llevan sentidos contrarios.
Ejemplo 1. Fuerza entre una corriente rectilínea indefinida y un espira rectangular
En este caso es más práctico partir de la expresión en función del campo magnetico.
El campo debido a la línea de corriente en el plano x = 0 es:
La contribución de los tramos horizontales se cancela.
Domina la contribución del tramo vertical más proximo
Para los sentidos de corriente de la figura, la fuerza resultante resulta atractiva.
Ejemplo 2. Fuerza magnetica sobre un conductor rectilineo
Intensidad de la corriente
La intensidad de la corriente eléctrica es la carga que atraviesa la sección normal S del conductor en la unidad de tiempo.
Sea n el número de partículas por unidad de volumen, v la velocidad media de dichas partículas, S la sección del haz y q la carga de cada partícula.
La carga Q que atraviesa la sección normal S en el tiempo t, es la contenida en un cilindro de sección S y longitud v·t.
Carga Q= (número de partículas por unidad de volumen n)·(carga de cada partícula q)· (volumen del cilindro Svt)
Q=n·qS·v·t
Dividiendo Q entre el tiempo t obtenemos la intensidad de la corriente eléctrica.
i=nqvS
La intensidad es el flujo de carga o la carga que atraviesa la sección normal S en la unidad de tiempo, que será el producto de los siguientes términos:
  • Número de partículas por unidad de volumen, n
  • La carga de cada partícula, q.
  • El área de la sección normal, S
  • La velocidad media de las partículas, v.
Fuerza sobre una porción de conductor rectilíneo.
En el espectrómetro de masas o en el ciclotrón, ya hemos estudiado la fuerza que ejerce un campo magnético sobre un portador de carga, y el movimiento que produce.
En la figura, se muestra la dirección y sentido de la fuerza que ejerce el campo magnético B sobre un portador de carga positivo q, que se mueve hacia la izquierda con velocidad v.
Calculemos la fuerza sobre todos los portadores (nSL) de carga contenidos en la longitud L del conductor.
El vector unitario ut=v/v tiene la misma dirección y sentido que el vector velocidad, o el sentido en el que se mueven los portadores de carga positiva.
En el caso de que el conductor no sea rectilíneo o el campo magnético no se constante, se ha de calcular la fuerza sobre un elemento de corriente dl
Las componentes de dicha fuerza dFx y dFy
Se ha de comprobar si hay simetría de modo que alguna de las componentes sea nula .
Ejemplo 3. Fuerza y momento sobre una espira
Fuerza sobre cada lado de la espira
La figura representa una espira rectangular cuyos lados miden a y b. La espira forma un ángulo q con el plano horizontal y es recorrida por una corriente de intensidad i, tal como indica el sentido de la flecha roja en la figura.
La espira está situada en una región en la que hay un campo magnético uniforme B paralelo al plano horizontal (en color gris), tal como indica la flecha de color azul en la figura.
Calcularemos la fuerza que ejerce dicho campo magnético sobre cada uno de los lados de la espira rectangular.
Ya hemos deducido la expresión de la fuerza que ejerce un campo magnético sobre una porción L de corriente rectilínea.
La fuerza Fr sobre cada uno de los lados de longitud a, esta señalada en la figura y su modulo vale
F1=i·1·B·a·sen90º=iBa.
La fuerza F2 sobre cada uno de los lados de longitud b, es
F2=i·1·B·b·senq =iBb·senq
Esta fuerza tiene la dirección del eje de rotación de la espira, y sentidos opuestos.
La fuerza F2 es nula cuando la espira está contenida en el plano horizontal q =0º, y es máxima cuando el plano de la espira es perpendicular al plano horizontal q =90º.
Momento de las fuerzas sobre la espira
La fuerza resultante sobre la espira es nula, sin embargo, las fuerzas sobre los lados de longitud a no tienen la misma línea de acción y forman un par de momento.
M = 2F1·(b/2)·cosq = i·ab·B·cosq = i·S·B·cosq
La dirección momento M es la del eje de rotación de la espira, y el sentido viene dado por la regla del sacacorchos.
Definimos una nueva magnitud denominada momento magnético m de la espira.
  • Cuyo módulo es el producto de la intensidad de la corriente i por el área S de la espira.
  • Su dirección es perpendicular al plano de la espira.
  • Su sentido viene determinado por el avance de un sacacorchos que gire como lo hace la corriente en la espira.
El momento se puede expresar en forma de producto vectorial de dos vectores, el vector momento magnético m y el vector campo magnético B
Como vemos en la figura
  • Su módulo es M=m·B·sen(90+q )=m·B·cosq =iS·B·cosq
  • Su dirección es perpendicular al plano determinado por los dos vectores, es decir, el eje de rotación de la espira.
  • Su sentido es el del avance de un sacacorchos que gire desde el vector m hacia el vector B por el camino más corto.
Cuando el vector campo B y el vector momento magnético m son paralelos, el momento M es nulo, esta es una posición de equilibrio.
Aunque la fórmula del momento M se ha obtenido para una espira rectangular, es válida para una espira circular o de cualquier otra forma
Para finalizar el presente trabajo, y basandome en soporte de internet a continuación se presentan aplicaciones de fuerzas magneticas y electricas en tecnologias actuales:
Aplicación de fuerzas eléctricas y magnéticas al control de formas líquidas en microgravedad.
En purificación de semiconductores y crecimiento de monocristales se usa la técnica de la zona flotante. Las fuerzas magnéticas estabilizan la zona flotante
Curva de estabilidad en el plano B -L para distintos valores de la longitud de penetración
Chorro perfectamente conductor: = 0; Chorro aislante: d = infinito
Los puntos a la derecha de cada curva representan estados inestables (ruptura del chorro). La aplicación de un campo magnético permite obtener chorros más esbeltos.
En la secuencia de imágenes: un puente estable por la acción de un campo eléctrico axial se rompe cuando este se hace cero. Se estudian acelerómetros basados en la dinámica de puentes líquidos, por la sensibilidad de su rotura a la microgravedad.
5. Bibliografía
Campos electromagnéticos. Rodríguez Danta, Marcelo. Universidad de Sevilla
Manuales universitarios, 1996.
WANGSNESS, R. K.: Campos electromagnéticos. De. Limusa, S.A. México, 1983 LÓPEZ RODRíGUEZ, V.:
Problemas resueltos de Electromagnetismo. Ed. Cera.
En Internet:
http://www.gr.ssr.upm.es/eym/www/eym5/index.htm#sld0096
http://www.sc.ehu.es/sbweb/fisica/elecmagnet/elecmagnet.htm